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Why Study Global Change?
•

 
Atmospheric CO2

 

concentration has risen 
50% since the 1800’s and will double from 
today’s level by the end of this Century

•
 

Scientists now agree that increasing CO2

 and other greenhouse gases are causing 
global warming

•
 

Changing precipitation regimes, nitrogen 
deposition, land disturbance and invasive 
species are also critical changes that will 
affect the Mojave Desert



•
 

Arid and semi-arid regions constitute 
~40% of the earth’s terrestrial surface
•

 
Extreme environments, and particularly 

deserts, are predicted to show the greatest 
responses to rising atmospheric CO2

 

and 
concomitant global change factors

Why Study Deserts?



Mauna Loa: Atmospheric CO2

 

Concentration



Gas Exchange through Plant Stomata

Water-Use Efficiency  =  CO2

 

uptake / H2

 

O loss





GCM-predicted winter temperatures in the 2080’s



EOS 85:385 (2004)



Sierra Nevada Snowpack Projections Based
on Different Emissions/Warming Scenarios

Hayhoe, Cayan, Field et al. (2004)  PNAS 101:12422-12427



Predicted Soil Moisture in Late 21st

 
Century



Past and Future Predicted 
Global Precipitation (Hadley GCM)





(From: Our Changing Planet, 1997)
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Size-Frequency of

Summer Rainfall

Events in the 

SW Deserts

Huxman et al.
(2004)



If Total Summer

Rainfall Increases,

We Will See 

Disproportionately

More Large 

(> 5 mm)

Rainfall Events

Huxman et al.
(2004)



Huxman et al. (2004)

Differential Use of Large and Small
Summer Rainfall Events



Potential Ecosystem Change with
Changing Precipitation Regime

from Schwinning
 

et al. (2004)





Dukes & Mooney (1999)
Trends Ecol & Evol

 

14:135-139

Possible Impacts of Global Change Elements 
on the Prevalence of Invasive Species

Element of Global Change Prevalence 
of Invaders

Increased [CO2

 

] +/–
Climate Change +
Increased N Deposition +
Altered Disturbance Regimes +
Increased Habitat Fragmentation +



Relative Growth of Six Invasive Species
at [CO2] in 1900, 2000 and 2100
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Dukes (2002)
Plant Ecology

 

160:225-234

Production of Centaurea solstitialis
(yellow starthistle) at elevated [CO2

 

] 
in monoculture and polyculture

Percent Increase (~2X [CO2

 

])

Aboveground 
Biomass

Reproductive 
Biomass

Centaurea in
 

monoculture + 70% + 91%

Centaurea in
 

polyculture + 69% + 47%

Total polyculture + 28%



Smith, Strain & Sharkey (1987)
Functional Ecology

 

1:139-143

Effects of Elevated CO2

 

(2X Ambient) on 
Dry Weight of Four Great Basin Grasses

Species Biomass (g plant-1)
(Functional Type) Seedling Mature

Bromus tectorum
(C3

 

invasive annual)

+ 93% + 54%

Agropyron smithii
(C3

 

rhizomatous grass)

+ 47% + 31%

Oryzopsis hymenoides
(C3

 

bunchgrass)

— + 10%

Eragrostis orcuttiana
(C4

 

weedy annual)
+ 38% + 51%



The Nevada Desert Research Center



Plant Gas Exchange Stan Smith & David Barker, UNLV

Aboveground Production Stan Smith & Beth Newingham, UNLV

Belowground Processes Bob Nowak (UNR) & Paul Verburg

 

(DRI)

Water Balance Bob Nowak (UNR) & Michael Young (DRI)

Nutrient Dynamics Dave Evans, Washington St.

Biological Soil Crusts Jayne Belnap, USGS-Moab
Lloyd Stark & Stan Smith, UNLV

Microbial Community

Landscape Gas Exchange

Eduardo Robleto, UNLV

Jay Arnone, DRI (CO2

 

)
Travis Huxman, Univ. Arizona (CO2

 

)
Jed Sparks, Cornell (NOx

 

)

Remote Sensing Lynn Fenstermaker, DRI
John Gamon, Cal. State LA
Susan Ustin, UC-Davis

Ecosystem Modeling Jim Reynolds, Duke Univ.
Paul Kemp, Univ. of San Diego

NDRC:  Principal Investigators



FACE

Control ring

Ambient

Nevada Desert FACE Facility
• Mojave Desert
• elevation: ~970 m
• annual

 

precip: ~140 mm
• max temp: ~ 45 C (Jul-Aug)
• min temp: ~ -10 C (Dec-Jan)

Control
• ~365 mol mol-1

FACE
• set point:

 

550 mol mol-1

• start date: April 28, 1997
• 24 h d-1

 

365 d yr-1

• conditional shutdowns: high
wind & cold temperature

NDFF

*NDFF Experimental design

Jordan et al. (1999) GCB







Oblique aerial view of Ring 3; an elevated CO2

 

treatment plot



Walkway: Preserve Biological Soil Crust N2

 

Fixation





Physiology
Leaf gas exchange
Root physiology

Aboveground production
Biomass
Litter
Carbon pools/fluxes
Nitrogen pools/fluxes

Belowground production
Root
Microbial
Carbon pools/fluxes
Nitrogen pools/fluxes

Soil water content
Biodiversity

Plants
Insects

Variables Measured at NDFF







Precipitation at the NDFF 1996-2003
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Larrea tridentata
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Productivity of Annuals: 1998

Smith et al. (2000)  Nature
 

408:79-82.



Why does Bromus
 

Respond More to 
Elevated CO2

 

Than Do Native Species?

1.
 

Accelerated phenology

2.
 

Produces smaller, more numerous seeds

3.
 

Lower construction cost



Elevated CO2Current CO2



Community change

Photos by T. Huxman & T. Esque

Elevated CO2Current CO2
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Class G Fires:

> 2,000 ha in Area

Knapp (1998)

Global Ecology &
Biogeography Letters



Correlations with Annual 
Precipitation

Years with Fire
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The Mojave Global Change Facility

A complementary facility to the Nevada Desert 
FACE Facility (elevated CO2

 

experiment) is 
investigating how GCM-predicted increases in 
summer precipitation, nitrogen deposition and 
crust disturbance may impact important 
ecosystem processes in deserts



MGCF
Simulate predicted 
increases in:

• summer precipitation 

• nitrogen deposition

• crust disturbance 

96 plots (ea. 200 m2)

Results are integrated with 
NDFF data to predict how 
desert ecosystems will 
respond to global change 
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False color infrared image of MGCF from the Probe 1

hyperspectral sensor (5 meter spatial resolution 11/10/02).



MGCF Studies Initiated
•Water uptake by roots

•Soil heterogeneity

•Nitrogen Mineralization

•Nitrogen Fixation

•Moss responses 

•Soil carbon uptake and 
respiration

•Leaf/canopy level photosynthesis

•Primary productivity

•Soil moisture/temp differences

•Reflectance measurements

•Aerial photography



Larrea  ANPP
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Annuals 
2003
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Biological Soil Crusts
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•
 

Increased nitrogen deposition
 

will result in 
increases in photosynthesis and 
production, particularly in concert with 
increased rainfall.

•
 

Disturbance
 

of biological soil crusts will result 
in reduced production over time.

•
 

Increased summer rainfall
 

will result in 
increased production; growth forms such as 
evergreen shrubs and perennial grasses will 
increase more in production than drought-

 deciduous shrubs or spring annuals.

MGCF Hypotheses



Higher Order Responses?



Ecological Effects of Global Change

External Variable

 

Internal Variables

 

New Regime

Elevated CO2

 

Greater plant production         More productive desert
Increased invasion   Fire-controlled grassland

Higher Temperature           Species range shifts               Community disequilibrium

Altered Precipitation
Wetter                          Greater plant production Semiarid ecosystem-type
Drier                             Increased mortality    Species-poor system

Increased N-deposition       Greater plant production         More productive desert
Increased invasion  Community shift to invasive



Global Change: How May it 
Affect Ecosystem Restoration?

•
 

Uncertainty of future conditions (?)

•
 

Shifting boundaries of reserves/corridors (-)

•
 

Potential decoupling of mutualisms (-)

•
 

Alleviation of environmental stress (+)

•
 

Stimulation of invasive species (-)
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Deserts are
 

quite responsive to elevated CO2

 

, 
altered precipitation, and N-deposition.

Potential responses to global change have important 
implications for land management.

Why Study Deserts?
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