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CO, production during my last global change seminar
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Within minutes we reach the CO, values expected
globally in 2090 under the 'business as usual scenario’
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Greater water-use efficiency and growth at
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Will deserts become more productive?



RELATIVE INCREASE
IN STEM LENGTH (CUMULATIVE)

CO, response of creosotebush in the
Mo jave Desert

Larrea tridentata at the Nevada Desert FACE Facility
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Difficulty of modeling future distribution — physiological tolerances
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Poison ivy abundance
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Elevated CO,

There is always a
surprisel - Effects of
rising CO, on poison ivy
abundance & toxicity
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http://www.poison-ivy.org/rash
http://www.biology.duke/johnsenlab/nature/images

NEVADA DESERT FACE FACILITY, 1998
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Red Brome (non-native grass)
is the 'surprise’ in the
western U.S.

Rising CO, dramatically
increases it's relative
abundance




Consequences of the surprises - Non-native species expansions and
disturbance — already a signal from recent CO, rise?




‘Increase in the frequency
of large fires
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Conceptual and experimental examples

*Special case of the Sonoran Desert

Current patterns and future possibilities
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Sonoran Desert example — Buffelgrass (Pennisetum ciliare)
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Tumamoc Hill AZ, 1989 — Images courtesy of R. Turner



Tumamoc Hill AZ, 1992 — Images courtesy of R. Turner



Tumamoc Hill AZ, 1998 — Images courtesy of R. Turner
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n the

Figure 3.14 Buffelgrass invasion of saguaro stand |
Arizona (left); fire-damaged ) (right). Photos: B




REGIONAL
CLIMATE T
* Temperature SCALE
iz ‘ ifg;pilalmn
CO., ——® -seasonality NITROGEN
2] fiprsiiont DEPOSITION
v S;JLS& -Lm LOCAL
=] D i .
' St :
=F*.R.E] TOPOGRAPHY | | USE ‘ ALl
DESERTIFICATION t -
v | l
o AVAILABLE H,0, EXOTIC SPECIES
=M NUTRIENTS, & = Herbaceous
fincrnsep Erosion 73| | | LTEMPERATURE STRESS| - Woody
- 4 | 185
VEGETATION STRUCTURE & FUNCTION|
« ANPP
- : » Nutrient Pools & Fluxes yes : SUCCESSFUL :
SIGNIFICANT * Species Composition * : SPREAD? :
COVER S e e e e
land - R k
CHANGE Upland iparian Linkages

“Proliferation of non-native annual and perennial grass will predispose
sites fo fire resulting in a loss of native woody plants and charismatic
macroflora. Low elevation arid ecosystems will henceforth experience
climate-fire synchronization where none previously existed. The climate-
driven dynamics of the fire cycle is likely to become the single most
important feature controlling future plant distributions in U.S. arid
lands."

US Climate Assessment



Conceptual and experimental examples

*Special case of the Sonoran Desert

Current patterns and future possibilities
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Current drought associated
with greater surface
temperatures, a 'global
warming' type drought (or GC
itself....)

Big effects on high elevation
systems - what about
deserts?
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Insights from a fast-responding system that
might be ‘seeing’ climate change now....




The Desert Lab at Tumamoc Hill Tucson,
Arizona

......

Highly variable environment
(deserts have been the test-
beds of many ecophysiological
investigations)




Stress tolerance — growth rate trade-off
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Suggests a change in the way that temperature and water co-vary in time —
water balance following rainfall should be negatively impacted



Stress tolerance — growth rate trade-off
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Already a signal of
climate change?

A view of the
possibilities for
ecosystem response
in the future?



A focus on water balance and response to water availability

Integrating nature of
landscape water balance
with respect to shifts in
ecology or climate

Weltzin et al., (2001) BzoScience



US Climate Change Science Program
Synthesis and Assessment Product 4.3

Higher temperatures, increased drought and more intense thunder-
storms will very likely increase erosion and promote invasion of exotic
grass species.

Arid lands very likely do not offer a large capacity to serve as a “sink”
for atmospheric CO2 and will likely lose carbon as climate-induced
disturbance increases.

Arid land river and riparian ecosystems will very likely be negatively
impacted by decreased streamflow, increased water removal, and
greater competition from non-native species.

Changes in temperature and precipitation will very likely decrease the
cover of vegetation that protects the ground surface from wind and
water erosion.

Current observing systems are very likely inadequate to separate the
effects of changes in climate from other effects.



Lots of data that looks like this:
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